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Abstract— Wireless networks of biologically inspired dis-
tributed sensors (BIDS) are hypothesized to enable improved
overall detection accuracy using ultra-low power and low
bandwidth spike-based communication between nodes. Unlike
traditional sensor networks, in which nodes communicate via
digital protocols that require precise decoding of binary signal
packets, BIDS nodes communicate by broadcasting generic
radio frequency pulses, or spikes. Individual BIDS nodes are
modeled after leaky integrate-and-fire (LIF) neurons, in which
both filtered sensory signals and inputs from other BIDS
nodes are accumulated as capacitive charge that decays with
a characteristic time constant. A BIDS node itself broadcasts
a spike whenever its internal state exceeds a threshold value.
Here we present detailed simulations of a BIDS network
designed to detect a moving target-modeled as a pure acoustic
tone with a translating origin-against a background of 1/f
noise. In the absence of a target, the average internal state
is well below threshold and noise-induced spikes recruit little
additional activity. In contrast, the presence of a target pushes
the average internal state closer to threshold, such that each
spike is now able to recruit additional spikes, leading to a
chain reaction. Our results show that while individual BIDS
nodes may be noisy and unreliable, a network of BIDS nodes
is capable of highly reliable detection even when the signal-to-
noise ratio (SNR) on individual nodes is low. We demonstrate
that collective computation between nodes supports improved
detection accuracy in a manner that is extremely robust to the
damage or loss of individual nodes.

I. INTRODUCTION

HERE is a need for cheap sensors that are robust,

energy efficient, and easy to deploy as an ad-hoc
network for monitoring large, remote, and often inaccessible
areas. Such a network should be infinitely scalable and
robust to failing sensors [1]. In a typical scenario, the
sensor network could be tasked with notifying an outside
observer of the presence and approximate location of a
particular target. One such scenario is monitoring the
security of national borders by detecting people and
vehicles. Conventional distributed sensor network (DSN)
nodes require abundant bandwidth to communicate to
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a global hub where information is integrated to make
a detection decision. The bandwidth required for many
nodes to communicate to a single central computer or
cluster head can be prohibitive and have considerable
power requirements [2]. Moreover, the expense of the
hardware required to allow such communication protocols
is not feasible for deployment over large, remote areas [1].
Here we propose a solution to such a remote monitoring
problem with Biologically Inspired Distributed Sensors
(BIDS). BIDS nodes are designed to be inexpensive
enough to be distributed liberally across a wide area and
able to be configured into a topology that is resilient to
changes, such as nodes failing or new nodes entering.
Because BIDS nodes use biologically motivated spike-based
communication and simple analog components, they would
consume significantly less power than a conventional DSN
node that uses digital communication protocols. Thus, BIDS
nodes could potentially be powered by scavenged resources,
such as solar energy collected from cheap photovoltaic
panels.

Individual BIDS sensors are expected to have a low signal-
to-noise ratio (SNR) because of the need to make them
small, cheap, and low power, which allows deployment over
large, remote regions. However, the dynamics of the BIDS
network can greatly improve the SNR through collective
computation. To enable these dynamics, the individual BIDS
node is modeled after a leaky-integrate-and-fire (LIF) neuron
[3], [4]. Input to the sensor head increases the internal state
potential of a node, which decays with a characteristic time
constant. The inputs to the node are summed in parallel,
which pushes the node toward a threshold. When the
threshold is reached, the node fires an omnidirectional spike
(mimicking an action potential in a neuron) represented by
a radio-frequency (RF) pulse. The nodes within a given
radius detect the spike, which increases their internal state
potential. This form of communication is inspired by the
concept of synaptic interactions between biological neurons.
Whereas synaptic interactions between biological neurons
can be either excitatory or inhibitory, depending on whether
the resulting input drives the internal state closer or further
away from threshold, interactions between BIDS nodes are
purely excitatory and thus always act to produce an overall
increase in excitation across the network. When one BIDS
node fires a spike, it brings all the other BIDS nodes within
its communication radius closer to their firing thresholds. If



no target is present, and thus the individual sensor heads
are responding solely to environmental noise, most nodes
will be far from threshold and the net effect of any single
spike will be negligible (i.e. unlikely to elicit any additional
spikes). On the other hand, if a target is present, such that
the individual sensor heads over some stimulated region are
all receiving additional drive, then more of the nodes in the
local network will be close to threshold and any single spike
can elicit multiple additional spikes. Thus, the presence or
absence of a target determines whether any single spike
evokes a chain reaction, thereby causing a large general
increase in firing activity across the stimulated portion of
the network. In this way, even a relatively weak target
signal can be amplified by collective interactions, producing
a much more detectable signal with a much higher SNR.
Here we will describe communication between BIDS nodes
(RF pulses) as lateral interactions in order to distinguish
them from the internal communication from the sensor head
that is detecting the raw stimulus.

BIDS networks are scalable, robust and fault tolerant
because each individual node performs local computations
to determine if a detection has occurred. Because each
BIDS node operates in a self-contained fashion, integrating
its sensor input with generic input from surrounding nodes,
the network can be extended or augmented simply by
adding additional nodes. The individual nodes within a
BIDS network do not need to communicate to a central
computer, which greatly lowers bandwidth requirements and
alleviates the need for complex communication protocols to
deal with collisions and changing topologies due to damage,
node loss, and other factors. The extremely simple and
robust spike-based communication protocol also replaces the
need for a MAC protocol [5]. These latter two points also
give evidence that the BIDS nodes will have lower power
requirements. Additionally, it has been well established that
neuromorphic hardware requires substantially less power
than digital hardware [6].

The focus of this work is to model a mechanism for a BIDS
network to detect a signal reliably in spite of low signal-
to-noise due to poor individual detectors and environment
noise. This is accomplished through collective computation
via interactions between the nodes. Although we will touch
on proposed hardware and communication mechanisms,
there are no fixed specifications for the individual nodes.

II. RELATED WORK

Others have demonstrated a capability for high coverage,
low power, inexpensive, and robust DSNs. To achieve high
coverage, [7] presented mobile nodes that repel other nodes
and obstacles to spread coverage with minimal nodes. This
facilitates a large network coverage by distributing the
sensor nodes as sparsely as possible. Although BIDS nodes
are currently designed to obviate the need for mobile nodes,
the algorithm and architecture can be used in mobile nodes

to reduce the overall operating power.

Power considerations were explored in [8], which argues
that a dense network of nodes is detrimental to the network
in several ways. The problem was alleviated by choosing
a subset of the network’s nodes to stay on for low power
usage. We argue that multiple nodes with cheap hardware
can achieve better detections as a dense network than as
a sparse network. A dense network also reduces power
consumption for each individual node because of low
transmission range requirements.

Other work has explored the insight biology gives into
dynamic networking, self-calibration, and peer to peer
communications by modeling ants [9], cells [10], fireflies
[11], and bees [12]. Specifically, [12] presented modeling
biological behaviors such as “energy exchange, pheromone
emission, replication, migration and death” to achieve
autonomous, scalable, adaptable, self-healing, and simplistic
networks. Similarly, we propose a DSN that models a
network of neurons to achieve detections by exploiting a
local, embedded algorithm.

Other research done by [1], [13] is closely related to what
BIDS is trying to accomplish. [1] looks into local algorithms
and a data-centric network. It is argued that each node does
not need an identity to be useful to the network. This allows
for a robust network that is resilient to topological changes.
Directed diffusion [13], although local and robust, requires
a query-driven data delivery model [14]. We are looking at
a specific scenario of monitoring a large, inaccessible area
where a simple detection scheme suffices. We believe that a
sensor network with a simple communication protocol will
lead to accurate detections for lower costs than [13] predicts.

IITI. IMPLEMENTATION

We used the open source neural simulation toolkit
PetaVision [15] to model the sensor network. Our input
was a simulated wave using the wave simulation toolkit
k-Wave [16]. The simulation grid is imagined to be 60 m
x 60 m with BIDS nodes spaced on average 0.94 m apart
from each other. A synthetic 125 Hz sinusoidal wave was
created with a wave speed of 350 m/s, which estimates the
peak frequency of the sound originating from a moving
vehicle [17]. The wave originates from a single point source
moving across the environment at 8.9408 m/s (20 mph),
which meant that it took 6.7 seconds for the vehicle to
cross the environment. Wave attenuation was ignored, and
the amplitude of the wave was arbitrarily scaled with
respect to simulated 1/f noise to achieve a specific SNR
for testing. Each node was set up to detect the simulated
wave’s frequency using a matched filter in a sensor head
(see figure 2). Excitatory and inhibitory noise was also
simulated in the sensor head to create a constantly varying
state potential. This will be discussed in more detail below.



The final input for our experiment was a video with a
dimension of 256 x 256 pixels, a scale of .234 meters per
pixel, and a .12ms time step. There was a 20 px border
placed around the outer edge (included in the 256 x 256
pixel size) where waves will not propagate to avoid edge
conditions. The entire video was overlaid with temporally
correlated pink (1/f) noise and the second half of the video
had the moving stimulus, which traversed approximately
from one end of the frame to the other horizontally. For
computation reasons, we sampled every 100th frame from
this video as an input to PetaVision, which amounted to
437 frames of noise followed by 437 frames of noise and
stimulus. Each frame was presented to the network for
10 time steps (12 ms). The BIDS nodes were initially
uniformly distributed onto the grid with a 25 percent density
with respect to the pixel grid, as shown in the left panel
of figure 1. The nodes were then randomly moved +/- 3
pixels along the horizontal and vertical axes to simulate
imprecise placement that is likely to occur with massive
deployment. The right panel of figure 1 shows an example
of node placement in a BIDS network.

The individual BIDS nodes simulated a conductance model
of a leaky-integrate-and-fire (LIF) neuron. Following the LIF
neuron model, a node generates responses by thresholding
its membrane potential. In our scenario, excitatory input
originates from the sensor head and interactions between
nodes where present. These two inputs arrive on separate
sensor heads. The input from other nodes is spiking, while
the input from the stimulus is a continuous-valued wave.

Each node is modeled as a single passive component
that fires when its membrane potential exceeds a threshold
potential. The node has excitatory and inhibitory conductance
channels, gg(t) and g;(t). In the absence of input, the
internal state potential of a node decays with a characteristic
time constant, 7. The inputs to the node are summed in
parallel into the excitatory conductance gg(t), which pushes
the membrane potential, V,,,, toward an excitatory synaptic
reversal potential, Vg and thus toward a voltage threshold,
Vin. When the threshold is reached, the BIDS node fires an
omnidirectional spike (mimicking an action potential in a
neuron) represented by a radio-frequency (RF) pulse. After
the node emits a spike, the value for Vi, jumps AV, and
then decays back to V}; according to a time constant 7.
A refractory period is modeled after a neuron’s transient
potassium conductance, gp(t), in series with a potassium
reversal battery, Vp.

The connection strength is governed by the equation

R} .. +1

Wij(r) = Slog —5—,
Ry +1

ey
where W is the strength of the connection between two
nodes; R;; is the radius between BIDS nodes ¢ and j; Ryqx
is the maximum connection radius; and S is a strength

parameter. In our simulation we used R4, = V2 * 65
pixels and S = 0.04. In our simulation, R,,,, is the
maximum connection radius, which is about 21.5m. This
means that each BIDS node connects to 19 x 19 neighboring
BIDS nodes where the weight of the connection is specified
by equation 1. Note that it is possible for a node to be
connected to another node with a strength of zero, which
would computationally be equivalent to the nodes not being
connected. Negative weights resulting from equation 1 were
set to 0.

When Vi < Vi, the BIDS nodes are governed by the
following equations:
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where g’ is the conductance change due to the sensor head
at node 7 and is a function of the input signal strength. a; is
the activity of a neighboring node j at radius R;; < Rias
from node :. At each time step, dt, noise is added to gg
with probability dt *+ F'reqr. The magnitude of the noise is
a uniform random variable between 0 and Ampg. Noise is
added to g7 in a similar fashion. ' and 7¢ are random noise
variables based on the Amp and Freq of the inhibitory and
excitatory channels, respectively.

For any time step on which V,ﬁl > Vin, the node changes
state as follows:

VTZ — V;“est (8)
Vi, = Vi + AV, ©)
ng — ng +1 (10)

In our model, we use a time interval of dt = 1.2ms;
resting potential of V,.;; = —70mV; leak membrane
time constant of 7 = 10ms; firing threshold of
Vihyrest = —43.38mV for the scenario without lateral
interactions and Vi, rest = —42.97mV for the lateral
interaction scenario; refractory period time constant
of 7y, = 10ms; excitatory conductance decay time
constant of 7x = 1ms; inhibitory conductance decay
time constant of 7; = 1lms; potassium conductance decay
time constant of 75 = 10ms; excitatory synaptic reversal
potential Vg = OmV; inhibitory synaptic reversal potential
Vi = —75mV; potassium reversal potential Vp = —90mV;



Fig. 1.

The BIDS network utilizes random node placement in pixel space. A 256 x 256 pixel grid represents a 60 m by 60 m grid, with a scale of .234 m

per pixel. Left: An example simulation environment before random movement of the BIDS nodes. The black dots represent node positions. Right: An
example simulation environment after randomly displacing the BIDS nodes. Note that nodes may overlap in pixel space due to each node being enlarged

for visibility.

threshold increase of Ay,, = 5mV; excitatory and
inhibitory noise amplitudes of Ampr = Amp; = .5;
and noise frequencies of Freqp = Freqr = 250Hz. Our
implementation currently only utilizes an inhibitory channel
so that the BIDS node will receive both excitatory and
inhibitory noise, which creates more randomness in firing
[18]. The mean noise of the excitatory and inhibitory
conductances were set to 5 percent of the leak conductance
on average. A detailed explanation of the conductance LIF
neuron, as well as a comparison with physiological data,
can be found at [3].

In a physical system, spikes generated by surrounding BIDS
nodes could be detected using an antenna coupled with a
matched filter for receiving RF pulses. However, in our
simulation, BIDS nodes are connected as described above,
and therefore all spikes are perfectly detected where the
amplitude of the incoming spike is modulated by equation 1.
We model the increasing state potential by assuming that
each received spike produced a brief change in an excitatory
conductance (equation 3) that drives the internal state
potential towards a positive rail voltage (equation 6). When
no target was present, each spike produced on average less
than one additional spike in the rest of the BIDS network
regardless of lateral interactions. This is because the internal
state potential of an average BIDS node is far enough
away from threshold in the absence of a target that any
extra activity tends to die off. When a target is present,
however, the responsive BIDS nodes in the area receive
additional excitatory drive from the sensor head. This extra
drive pushes their state potentials closer to threshold so
that any neighboring spikes will be more likely to induce

additional spikes. Thus, in the absence of a target, isolated
noise-induced detections would cause only small transient,
local excitation, while detections in the presence of a
target would be more likely to evoke additional spikes,
thereby inducing a stronger, more prolonged excitation. The
amplification would result in a higher spike count of each
node per time interval over the stimulated portion of the
BIDS network and thus indicate target detection.

In order to analyze the network’s performance, we analyzed
the performance of each individual BIDS node with and
without lateral communication. In other words, the network
performance is reported as the average performance of the
individual nodes.

IV. SIMULATION RESULTS

We ran 16 different scenarios to test the relationship
between accuracy and input signal power of a BIDS
network. The performance of the network was evaluated
using a signal detection task. Fight different SNRs (2.5, 5,
10, 20, 40, 60, 80, and 90 percent) were used for the BIDS
network, with and without lateral excitation between BIDS
nodes. The SNR was computed by finding the root mean
squared (RMS) value of the wave amplitude, simulated
by pixel intensity, with respect to RMS intensity of the
overlaid 1/f noise. Note that because the RMS value of
SNR was used, amplitude peaks may be higher than the
SNR. Detections were made by summing spikes over a
fixed window at each BIDS node.

Figure 2 shows the detections with and without lateral
interactions for a signal strength of 40 percent. A clear



qualitative separation between the stimulus and no-stimulus
spike rates is evident. The voltage threshold of the BIDS
nodes was separately adjusted for each of the two lateral
connection scenarios such that they both had a background
firing rate of approximately 1 Hz when presented with 1/f
noise.

Figure 3 shows a quantitative comparison of the detection
capability for the two BIDS network scenarios (lateral
interactions absent vs lateral interactions present) at 10,
20, and 40 percent signal strength. As the SNR increases,
the distribution of the number of spikes fired by the
individual BIDS nodes in response to the moving target
becomes increasingly distinct from the distribution of spikes
occurring during ongoing background activity. The increased
separation of the two distribution histograms indicates
improved detection performance of the corresponding
nodes. Lateral communication improves the detection
performance of the individual BIDS nodes at all SNRs
tested, but the improvement becomes more pronounced as
the SNR increases from 10 to 40 percent. A higher SNR
drives BIDS nodes closer to their firing thresholds, and
thus promotes stronger chain reactions as a result of lateral
excitation. At an SNR of 60 percent, this effect saturates,
at which point the BIDS nodes in the laterally connected
network achieve essentially perfect detection, as indicated
the non-overlapping spike distributions corresponding to
target present (red) and target absent (blue), respectively. In
contrast, spike distributions remain significantly overlapping
without lateral communication between BIDS nodes. The
origin of successive peaks in figure 3 for lateral interactions
could be due to the unnaturally small region being modeled.

Figure 4 shows the ROC curves generated from the spike
distribution histograms shown in figure 3. ROC curves
are generated by sliding the target detection threshold,
representing the number of spikes a BIDS node must fire
in the 2.17 second summation interval in order to report a
hit”, from left to right (i.e. from fewer to more spikes).
The ROC curves plot the hit rate at each target detection
threshold as a function of the false alarm rate. The 45
degree black line indicates chance performance. The area
under the ROC curves, plotted in figure 5 as a function
of SNR, measures the probability that the average BIDS
node detects the target and does not responding to the
background. It is clear that lateral interactions greatly
improve the detection performance of the average BIDS
node. Thus, even relatively poor sensors, whose detection
performance is highly unreliable when acting in isolation,
can become highly reliable detectors when acting in concert
with a network of similar nodes mutually excited by generic,
low-bandwidth, low-power, robust lateral interactions of the
type described here.

V. DISCUSSION

Our BIDS network simulation was set up using PetaVision
[15]. The input to our simulation was a synthetic input video
of a wave propagating through air to simulate a moving
vehicle. The input consisted of 1/f noise for the first half
of the video, followed by synthetic waves overlaid with 1/f
noise for the rest. Eight different SNRs were used to test the
network’s ability to differentiate between the two halves of
the video. The differentiation was quantified by calculating
distributions of the difference in the number of spikes fired
by the network nodes. We show that lateral interactions
allow for each individual BIDS node to achieve much better
detections than without lateral interactions.

One possible discrepancy that may occur between our model
and reality is that although the sensor head model itself is
noisy, destructive interference in wireless communication
was not explicitly simulated. Destructive interference can
decrease the number of successful transmissions from node
to node. However, our simulation included ample noise in
the sensor head as well as the environment, which should
encompass small amounts of transmission interference.
Additionally, the abundance of nodes and the nature of
lateral interactions should make the system robust to lost
transmissions. More specifically, because the many nodes are
all communicating amongst each other with identical signal
characteristics, communication errors from an individual
node has benign effects on the network as a whole.

Another discrepancy is the fact that we chose to ignore
wave attenuation and specific amplitudes of the input wave.
Consequently, the scenario would not model a real-world
situation correctly. In practice, nodes would not be able to
detect a sound if the distance between the node and the
source is too great, depending on the amplitude of the sound
and properties of the location of the network. However, this
paper shows that the accuracy of detections is improved
when the network exploits collective computation when
exposed to the same input.

In conclusion, our results show that collective computation
improves detections of individual BIDS nodes in a high
noise environment without increasing overall spike rates.
This could allow for low-power, noisy individual detectors
in a network spread over a large area.

VI. FUTURE WORK

It would be interesting to explore methods for determining
the spiking histograms for a physical BIDS network. There
are two proposed ways of doing this.

One idea is implementing delayed lateral inhibitory
communication between nodes. In other words, when a node
spikes, an excitatory lateral signal would be followed after
a short delay by an inhibitory lateral signal. This second
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Fig. 2.

Interactions between BIDS nodes results in improved detection. Images are of a single representative time step. Left Column: Visualization of input

signal. Top Left: 1/f (pink) noise only. Bottom Left: 1/f (pink) noise with super-imposed stimulus. Middle Column: BIDS node output - no communication
between nodes. Right Column: BIDS node output - nodes mutually excite each other via wireless communication (lateral RF pulses). The firing rate without
the added stimulus (top row) for both scenarios was on average 1 Hz. The increase in activity produced by the stimulus is much greater with lateral
interactions present (bottom right) than without (bottom middle). The stimulus consisted of a propagating radial wave, SNR of 40 percent. The black dots

represent node spiking (the RF pulse).

signal decreases the firing potential of all nodes that receive
it, with a strength proportional to the excitatory signal.
Doing this will allow for the network’s firing to oscillate
synchronously when a detection is made [19]. This idea
is modeled after the way information is transmitted from
the retina to the cortex [20]. A single connected node on
the outer edge of the network can look for this specific
oscillation period in the network to notify the observer of a
detection.

A second idea is that a BIDS node’s functionality could be
extended to have two output firing modes: a broadcast lateral
interaction signal and a stimulus exfiltration signal. The
exfiltration signal would similarly be a pulse to alleviate the
nodes from having a MAC protocol. A node will broadcast
an exfiltration signal when its integrated firing rate reaches
a threshold. This signal can differ from lateral interaction
communication in its power characteristics or frequency,
for example. Nodes that receive this signal will forward
the exfiltration signal with a refractory period. Connected
nodes on the edge of the network will send the detection
to the observer when the exfiltration signal is received.
This strategy, similar to what [13] accomplished with direct
diffusion, would allow for a detection by a local base station.

Further work must be done to model a real-world
deployment of a BIDS network more accurately by taking
sound attenuation and amplitude into account. Furthermore,
although we have constructed prototype BIDS nodes, we
have yet to define detailed hardware specifics and field test a
BIDS network using prototypes. It would also be interesting
to test a variety of BIDS network prototypes with various
densities and signal types.

Further experimentation should be done to compare detection
accuracy and power consumption between BIDS and other
conventional sensor networks in our simulated environment.
Specifically, it would be informative to implement [13] in
our simulation to compare with the results of BIDS.

Other work can be done to BIDS to improve detections.
Depending on the application, an additional sensor head
can make BIDS more sensitive to a specific stimulus in
exchange for more expensive and power dependent sensors.

Our current model of a BIDS node implements a static
firing threshold, in which we hand tune to achieve certain
firing rates. A dynamic threshold could be implemented
to dynamically enforce a firing rate, as well as achieving
more robustness to different types of environments with
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Fig. 3. The figure shows histograms of the distribution of the total number of spikes for each BIDS node in 2.17 s for SNRs of 10, 20, and 40 percent
(top, middle, bottom rows, respectively). The bar height represents how many nodes spiked a given amount (indicated by the value on the horizontal axis).
The blue bars designate the scenario when no stimulus is present and the red bars are when the stimulus is present. The left plot is for the system without
lateral interactions and the right plot is for the system with lateral interactions. The amount of separation between the average values of the blue and red
bars indicates the detection performance of the system. Zero overlap between the blue and red bars would indicate perfect detection performance.



Probability of Detection

Probability of Detection

Fig. 4.

o
o

o
o2}

o
~

o
(V)

C
508 . —
=
O
0]
©
206 :
y— e
(o]
ey
=04 -
Keo] |
8
€] \
& 0.2 1 i
Chance
No Lateral Interactions(0.5651)
Lateral Interactions (0.93297)

Receiver Operator Characterists for BIDS Network at 2.5% SNR

Chance

No Lateral Interactions(0.52547)

Lateral Interactions (0.54526)
0.4 0.6 0.8 1
Probability of False Alarm
Receiver Operator Characterists for BIDS Network at 10% SNR

0 0.2

0.4 0.6
Probability of False Alarm
Receiver Operator Characterists for BIDS Network at 40% SNR

L L L L

0 0.2 0.8 1

0.8 1 L
0.6 1 i
0.4 i
7 ’
0.2 1 ) L
s

Chance

No Lateral Interactions(0.87864)

P Lateral Interactions (1)

T T T T

0 0.2 0.4 0.6 0.8 1

Probability of False Alarm

ROC curves compare model performance with and without lateral interactions at 2.5, 5, 10, 20, 40, and 60 percent SNR for each BIDS node.

Probability of Detection Probability of Detection

Probability of Detection

Receiver Operator Characterists for BIDS Network at 5% SNR

1 : D - yd
0.8 [
0.6 | " —
0.4 F
0.2 { o r

- Chance
No Lateral Interactions(0.53226)
0 ‘ ‘ Lateral I‘ntexactlons (0.92334)
0 0.2 0.4 0.6 0.8 1
Probability of False Alarm
Receiver Operator Characterists for BIDS Network at 20% SNR
0.8 | ) :
0.6 | ’ —
0.4 F
0.2 1 L
Chance
) No Lateral Interactions(0.67966)

0 e ‘ ‘ La:‘eral Interactions (1)

0 0.2 0.4 0.6 0.8 1
Probability of False Alarm
Receiver Operator Characterists for BIDS Network at 60% SNR

1 L L L
0.8 1 r
0.6 | —
0.4 | " .
0.2 1 L

P Chance
- No Lateral Interactions(0.94162)

0 e ‘ ‘ La:‘eral Interactions (1)

0 0.2 0.4 0.6 0.8 1

Probability of False Alarm

The curves show that wireless communication between BIDS nodes leads to greatly increased detection accuracy.
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resulted in dramatic improvement of detection performance over no lateral communication.

different noise levels. The enforcement of a firing rate
allows for more control of power consumption, as well
as an direct comparison of lateral interactions versus no
lateral interactions by taking out the difference of firing rates.
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